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Abstract-The results of a numerical study of the simultaneously developing flow at low Reynolds number 
in the entrance region of a cascade of parallel horizontal plates with a uniform flow at upstream infinity are 
presented. The finite difference equations for the Navier-Stokes and energy partial differential equations, 
accounting for axial diffusion of momentum and heat, are solved by ADI and QUICK methods and the 
results extrapolated to zero mesh size with extended Richardson extrapolation. The isothermal flow results, 
incremental pressure drop and heat transfer numbers, and hydrodynamic and thermal entrance lengths are 
presented for Pr = 0.7 and Reynolds numbers between I and 20; and for constant wall temperature and 
constant wall heat flux boundary conditions. Accurate engineering correlations for the effects of the Rr on 

various quantities are also obtained. 

1. INTRODUCTION 

AMONG the practical considerations that attract the 
continuing interest in the parallel plate passage 
geometry is that it offers high heat transfer rate and 

low pressure drop [l]. Two heat transfer boundary 
conditions are of primary interest--constant wall tem- 
perature, denoted here by subscript T, and constant 

wall heat flux, denoted by subscript H. For laminar 
fully developed flow, the parallel plate passage 
geometry has Nu, = 7.5407, NuH = 8.2353 and 
.f’Re = 24 giving a higher Nu/(f Re) than any other 

cross-sections [2]. Typical compact gas-to-gas heat 
exchangers have width/height ratios of at least 100 
and require low Reynolds numbers and laminar flow. 

The hydrodynamically developing flow between 
parallel plates has been solved by a variety of methods. 
Shah and London [2] presented values for K, the 
incremental pressure drop number, for large Reynolds 

numbers, and recommended a value of 0.674 for 
K(m). This value is in excellent agreement with the 
correlating equation, K(m) = 0.6779+4.5914/Re for 
40 < Re < 2000, given in ref. [3]. For the thermally 

developing flow, known as the Grdetz-Nusselt 
problem, Shah [4] calculated the incremental heat 
transfer number N for developing flow and fully 
developed flow and obtained NT = 0.02348 and 
NI, = 0.0364 with Pe = a. For the simultaneously 
developing flow problem, where both the velocity and 
temperature profiles are developing together, only a 
few solutions can be found in the literature. Hwang 
and Fan [5] obtained a numerical solution for the T 
and H boundary conditions with an assumed uniform 
flow at the entrance. Their Nusselt numbers are also 
reported in Shah and London [2]. 

This paper presents the results of a numerical study 
of the simultaneously developing flow, laminar flow. 

forced convection at Re ranging from 1 to 20 and 
Pr = 0.7 in the entrance region of a cascade of hori- 

zontal parallel plates. The flow is assumed to be uni- 
form at upstream infinity. Two types of thermal 
boundary conditions are considered-a constant axial 

wall temperature and a constant and equal wall heat 
flux. In most previous numerical solutions, the 
approximations of various parameters, such as K( 8x) 

and N(W), deteriorate at the end of the hydrodynamic 
or thermal entrance. In the present work, dis- 
cretization error is reduced by extrapolating three 
mesh sizes to zero mesh size giving accurate results 
and excellent agreement with previous solutions [3]. 

2. THE EQUATIONS AND THEIR SOLUTION 

In Fig. 1 fluid is pictured as flowing through an 
array of horizontal parallel plates which are a centre- 
line distance H apart. Both the temperature T, 
and velocity Ui, are uniform at upstream infinity. The 
plates are either kept at the same uniform temperature 
TP or the heat flux is constant. The flow becomes fully 

developed far downstream. Dimensionless Cartesian 
coordinates are chosen such that the plate spacing is 

unity. 
The equations of motion are written in terms of the 

stream function IJ and vorticity {, defined by 

where u, u are velocity components in the X-, Jj-direc- 
tion. 

The dimensionless governing equations for vor- 
ticity, stream function and temperature, derived from 
the Navier-Stokes equations and subject to the usual 
Boussinesq approximations, are 
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NOMENCLATURE 

4 hydraulic diameter .\.” dimensionless axial coordinate for the 

.1’ Fanning friction facto1 thermal problem, .~j(@, RP Pr) 

Cr Grashof number .X, dimensionless transformed axial 

H channel width coordinate 

K incremental pressure drop number ? ditneI~sionless coordinate normal to the 

K(a) fully developed incremental pressure platl2s. 

drop number 

&$ hydrodynamic entrance length Greek symbols 

L,: thermal entrance length 3! thermal diffusivity 

I1 number of interior mesh points X</> false transient factor 

N incremental heat transfer number i-: convergence factor 

N(m) fully developed incremental heat transfer y 

number ; 
vorlicity 
dimensionless temperature 

Nu Nusselt number 1’ kinetic viscosity 

& pressure drop P fluid density 

PP Pklct number i stream function. 

PI Prandtl number 

Rtj Reynolds number, D, IJ, :‘I’ Subscripts 

t time bC thermal boundary condition 

At time step fd fully developed laminar flow 

T temperature hy hydrodynamic problem 

5 plate temperature N constant heat flux boundary condition 

T, upstream temperature m mean 

u dimensionless axial velocity P at the plate 

urn mean dimensionless axial velocity t transformed 

ui, upstream velocity th thermal problem 

2’ dimensionless vertical velocity T constant temperature boundary 

.Y dimensionless axial coordinate condition 

.‘i+ dimensionless axial coordinate for the .Y local 

hydrodynanlic problem, s/(& Rr) 32 free stream value. 

;< 
= -U,ii -I::, + ie (i: f $) 

c?t 
(2) 

pitch of the plates, the kinetic viscosity and the ther- 
maI diffusivity. 

do -. = 
c’t 

Figure 1 shows the region ABCDE within which 

*= ~~+~~~+~ (3) 
these equations were solved. The solution region is 
extended to infinity both upstream and downstream 

of the entry to the channels. Uniform fiow was 
imposed on section Al3 : II = I ; z! = 0 ; fi = 0 ; ; = 0. 
Since the solution region represents the upper half of 
a channel formed by two parallel plates, the boundary 

in which 0 = (T- T, )/(T,, - T, ), Re = U, Q,/v, and 
Pr = v/a. Here H. v, and cx denote respectively the 

unrform stream 

n 

FIG. I. Boundary conditions and soiution region for parallel 
plate cascade. 

conditions on sections AB and DE are: r = 0; 

?u/?y = 0; ( = 0. On section BC, the velocities are 

zero and the stream function is constant. 
The coordinates and partial differential equations. 

equations (2)-(4). were transformed both upstream 
and downstream of the entrance using a function 
related to the downstream decay [6]. The transformed 
coordinate I, is dimensionless and - I < x, < 1. It 
may be calculated from the dimensionless coordinate 
s in equations (2)-(4) using 

The transformed coordinates give a more equal 



change in dependent variables over each grid element zero grid size of the finite difference equation solutions 
and points at upstream and downstream infinity. The for three different grid sizes. Each grid is solved with 
number of grid elements required for a given dis- the same parameters and boundary conditions. The 
cretization error is greatly reduced at the expense of threegridschosenwere6x81, 11x161 and2lx321 
slightly more computation per grid element. mesh points in the y- and x-direction respectively. 

Finite difference equations were derived from the making each grid size half its predecessor. The fol- 
transformed non-linear partial differential equations. lowing extrapolation formula was calculated from the 
Forward differences were used for the time derivatives general expression in Maclaine-cross [6] : 
and central differences for space derivatives. Quad- 
ratic upstream interpolation for convective kinematics A = A3_ (A3-Al)-12(A3-A2) 

(QUICK) [7] was used for the convective terms in 21 
(11) 

both the momentum and energy equations to give 
stability with a discretization error of the order of the 

where A3 is the value at the smallest grid size, etc. It 

square of the mesh size. 
should be noted that the above formula is valid only 

The alternating direction implicit (ADI) iterative 
for grids formed by successive mesh doubling, only 

method was used to solve the non-linear finite differ- 
for numerical methods which are uniformly second- 

ence equations simultaneously. Convergence was 
order accurate, and for very tight iterative conver- 

measured by calculating 
gence. Other details of the solution method arc dis- 
cussed elsewhere [8]. 

(6) 
3. ISOTHERMAL FLOW RESULTS 

where n is the number of interior mesh points, $m,, 
the maximum magnitude of Cp, z,~ the false transient Equations (2)-(4) have been solved for the fol- 

factor, and At the time step. Iteration was repeated lowing Re: 1, 2. 5, 10, 15, and 20 and Pr = 0.7. It 

until E;, E,,,, and Ed were all less than lo-’ so that the should be emphasized that Re is based on the 

error in solving the finite difference equations was hydraulic diameter D, = 2H. 

negligible and independent of grid size. The extrapolated apparent Fanning friction factor- 

The dimensionless groups used in the present work Reynolds number product ,j:,,, Re is presented in 

are defined as follows (note that the standard coor- Table 1 for the range of Re at each downstream 

dinate x+ = x/(D,, Re) is used for the hydrodynamic location for the hydrodynamic entrance region of par- 

problem and x* = x/(& Re Pr) for the thermal allel plates. As can be seen here, J,,, Re is strongly 

problem) : dependent upon Re for low Re and has very steep 
gradients close to the entrance. Far downstream from 

l the incremental pressure drop number the entrance, _&, Reconverges to the asymptotic fully 

K(x) = ;$$2 - (.f‘ Re), (4x+ ) ; 
developed value of 24. 

(7) For the hydrodynamic entrance length problem 
m with a uniform flow far upstream, direct comparisons 

o the local Nusselt number of f,,, Re for low Re flows are difficult as only a few 
solutions can be found in the literature. The only 
available correlation presented in Shah and London 
[2] gives values off,,, Re which are independent of Re 

where 0, is the fluid bulk mean temperature ; 
and much lower than those in Table 1. The computed 

l the mean Nusselt number 
apparent Fanning friction factor-Reynolds number 
product distributiol~s are shown graphically in Fig. 2 
for different Rr. The dashed line representing the Shah 
and London correlation at Re = x? is also shown in 
the same figure. 

l the incremental heat transfer number The development of the centreline velocity for vari- 
ous Re is shown in Table 2 at each axial coarse mesh 

N&x) = Nz~,,~x* - Nu,,x* (10) station for Re = 1, 2, 5, 10, 15, and 20. For these low 

where subscript bc represents the associated thermal Rr flows with a uniform inlet condition at upstream 

boundary conditions (T or H) and h& is the Nusselt infinity, the upstream diffusion of momentutn is quite 

number for fully developed flow. significant as can be seen from the centreline velocity 
at the entrance (x+ = 0). The dimensionless velocity 

Discretization error is the difference between the increases with decreasing Re at .Y+ = 0 and is 2433% 
exact solution of the finite difference equations and higher than the mean velocity u,. Inside the channel. 
the exact solution of the consistent partial differential wall shear takes effect and the centreline velocity 
equations. For the finite difference equations used increases with Rc. 
here this is of the order of the grid size squared. It The fully developed incremental pressure drop 
may be reduced to fourth order by extrapolation to number K(em) is tabulated to four significant figures 
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0.01282 
0.02634 
0.04063 
0.05579 
0.07192 
0.089 I7 
0.1077 
0 1277 
0.1495 
0. I733 
0. I Y96 
0.229 I 
0.2625 
0.3010 
0.3466 
0.4024 
0.4743 
0.5756 
0.7489 

103.563 I 58.608 I 46.1770 
61.1289 41.i41 I 35.7939 
47.4956 35.4792 31.8083 
40.956 1 32.5395 29.6999 
37.1669 30.6869 x.4210 
34.6903 29.4107 27.56% 
32.0154 28.4833 26.9522 
31.5851 27.7811 26.4896 
30.5199 27.2308 26.1273 
2Y.646 I 26.7865 25.8348 
2x.9127 26.4188 25.5927 
78.2863 26.1079 25.3x79 
‘71.7429 25.8398 25.2114 
27.2642 25.6042 25.0563 
26,X349 25.3932 24.9174 
26.4419 25.2000 24.7902 
26.07 I6 25.0 I8 I 24.6704 
25.7068 24.83X8 24.5513 
75.3120 24.6448 24.4246 

43.0822 
33.9890 
30.5030 
28.7353 
27.6729 
26.9624 
26.4528 
26.0685 
25.7674 
25.5243 
75 1737 ._“__ 
25.1531 
25.0065 
34.X776 
24.1622 
74.6565 
24.5570 
24.4589 
14.3528 

41.7367 
33.0339 
24.8591 
28.2669 
27.3097 
36.6695 
%.liO? 
25.8639 
25.5926 
25.3736 
25.1924 
25.039 I 
24.9069 
24.7908 
74.6868 
24.5916 
34,501’) 
24.4135 
‘4.3179 

- Shah and tondon [21 

FIG. 2. Apparent Fanning friction factor-Reynolds number 
product for hydrodynamically developing flow. 

in Table 3 for the range of Rr and three mesh sizes. 
The three-point extrapolation to zero mesh size 
reduces but does not eliminate discretization error. A 
comparison of two-point and three-point extra- 

polations gives an indication of the magnitude of the 
remaining discretization error. Two-point extra- 
polation using the two smallest meshes gave values 

which arc within 0.5% of the three-point extra- 
polation. see the last column in Table 3. It is believed 
that the residual discretization error in K(m) is less 
than 0.5%. 

For 1 < Rr < 20, K(Z) correlates very well with 
l/Re and the following equation is given to approxi- 

mate the values of K(W) in Table 3 with the error 

ranging from 0.06% at Re = l--1.1% at Re = 20 

The fully developed incremental pressure drop 
number K( x,) can now be calculated for a wide range 

of Rr from 1 to 2000 from the above equation and 

K(X) = 0.6779+4.5914;& given in ref. [3] with a 
maximum error of I. 1%. The values of K(X) cal- 
culated from the correlation given by Chcn 191, 
K(E) = 0.64+38]Re, also presented in Shah and 
London [2], are considerably higher for RP of up to 

0.0 I .3340 I .3295 I.3149 I .x99 
0.00633 1.343 I 1.3477 1.3608 1.3813 
0.01282 I .3522 1.3655 I .4014 1.4457 
0.01949 I .3614 I .X27 1.4346 I .4802 
0.02634 I .3704 I .3990 1.4594 I .4947 
0.03338 I .3795 I.4143 1.4766 i .4995 
0.04063 I .3884 I .4284 1.4877 I so00 
0.04x09 I .3972 1.4411 1.4942 I .5000 
0.05579 1.4058 I .4524 I .4978 I. 5000 
0.06372 1.4142 I .4623 I .499s 1.5000 
0.07192 I .4224 I.4707 1.5000 I so00 
0.08917 I .4302 1.4778 1.5000 I.5000 
0.10769 I.4379 I .4846 I 1 5000 I.5000 

I.2651 I .2434 
1.3991 I.4137 
I.4711 I .483Y 
I ,495-o I .4958 
I .5000 I .sooo 
I .5000 I .5000 
I .5000 1 so00 
1.5000 1.5000 
1.5000 1 so00 
1.5000 2.sooo 
1.5000 1.5000 
1.5000 I .50011 
1.5000 I t 5000 
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Table 3. Incremental pressure drop number K(w) 

I223 

Re 6X81 11 x 161 21 x 321 Extrapolated Difference (%) 

1 6.3603 6.8860 7.1549 7.2707 0.36 
2 3.5631 3.7832 3.8864 3.9300 0.23 
5 1.9023 1.9236 1.9294 1.9314 0.00 

IO 1.3460 1.3055 1.2820 1.2718 0.18 
15 1.1538 1.1030 1.0709 1.0566 0.34 
20 1.0475 1.0045 0.9688 0.9521 0.50 

Table 4. Hydrodynamic entrance length .L$ 

Re I 2 5 IO 15 20 

Lh’, 0.18086 0.09172 0.03877 0.02142 0.01634 0.01323 

600 and lower for Re above 1000 than those of the 
present study. 

The hydrodynamic entrance length L&, defined as 
the duct length required to achieve a duct section 
maximum velocity of 99% of the fully developed value 
(1.5 for parallel plates), is presented in Table 4. L$ 
= 0.011 and is constant when based on a boundary 

layer type analysis [2]. However, when the complete 
set of Navier-Stokes equations is solved L$ is a strong 
function of Re for low Re flows, as seen in Table 4. 

Nu, is a strong function of the P&let number for low 
P&let number flows. The present numerical results 

are listed in Table 5. An additional solution at 
Pe = 1.4354 was obtained and the fully developed 
Nur of 7.9635 from the present work is in excellent 
agreement with the value of 7.964 given in Shah and 

London [2]. 
The extrapolated values of the fully developed 

incremental heat transfer number NT(~s) at Pr = 0.7 
are given in Table 6. 

For Pr = 0.7 and 1 < Re < 20, the following cor- For Pr = 0.7 and 1 d Re < 20, the following cor- 
relation is provided to approximate these values with relation can be used to approximate the data in Table 
the error ranging from 0.6% at Re = 15 to 3.5% at 6 with the error ranging from 0.4% at Re = 20 to 
Re=2: 3.4% at Re = 5 : 

L& = 0.004004+0.1765/Re. (13) 

Chen [9] proposed an equation to calculate Lh’, for 
the hydrodynamically developing flow problem with 
a uniform flow at the entrance which gives values 
considerably higher than those in Table 4. The main 
contributing factor for this is the significant upstream 
diffusion of momentum in the case considered here, 
hence more developed velocity profiles and shorter 
entrance lengths. 

Nr( X) = 0.006778 + 0.97561 Rr. (14) 

The dimensionless thermal entrance lengths L& 

defined by NI+(L$,~) = 1.05Nu,-, are given in 

Table 7. 
Equation (15) correlates these values with the devi- 

ation ranging from 0.3% at Re = 20 to 3.7% at 

Re = 2 

L& = 0.0003545+0.2643/Re. (15) 

4. CONSTANT WALL TEMPERATURE 

RESULTS 

The fully developed Nusselt number for the con- 
stant wall temperature boundary condition is 7.5407 
for the case of negligible axial heat conduction. How- 

ever, when the effect of axial heat conduction in the 
fluid is included, the fully developed Nusselt number 

Table 5. Fully developed Nu, as a function 
of Pe 

PC? Present solution Ref. [2] 
_ 

0.7 8.0363 
1.4 7.9668 
1.4364 7.9635 7.964 
3.5 7.8160 
7 7.6838 

10.5 7.6231 
14 7.5926 

-_____ 

5. CONSTANT WALL HEAT FLUX RESULTS 

In the case of constant wall heat flux, the axial heat 
conduction within the fluid is constant and therefore 
does not affect the Nusselt number. The fully 
developed Nusselt number in this case is 8.2353 and 
is independent of the P&let number. Table 8 presents 
the extrapolated fully developed incremental heat 
transfer number NI,( co) obtained in the present work. 

For Pr = 0.7 and 1 < Re < 20, the following cor- 
relation is provided to approximate the values in 
Table 8 with the error ranging from 0% at Re = 5 to 
1.4% at Re = 20: 

N,(m) = 0.04423+0.6134/Re. (16) 

The dimensionless thermal entrance length Lg.,, 
presented in Table 9 can be calculated from the fol- 
lowing equation with the deviation ranging from 



Table 7. Thermal entrance length L$, r 

l&J I t 5 IO 15 20 
__.____.__~_.____._._._.._.._ ..-.._ ._ .-..-. .--. 

G.? 0.2655 0.1309 0.05278 0.07686 0.0 I866 0.01405 

Table 8. Incremental heat transfer number N,,( xi) at Pr = 0.7 

Rta I 2 5 IO IS 30 

N,{(x) 0.6568 0.3526 0.1669 0.1067 0.084 L7 0.07389 

Table 9. Thermal entrance length I$,,, 
““_ _.____-- _..-.---- 

RC I 2 5 10 1.5 
___..-.-_-- ._..._. - _-.------- 

L* ‘,h.,, 0.2635 0.1355 0.05855 0.03380 0.02534 
_-.--. 

20 

0.02i24 

0.07% at Rc = I to 1.6% at Re = 20: 

G?.,, = 0.008146+0.2552iRr. i17) 

6. CONCLUSIONS 

An analysis has been presented for the flow and heat 
transfer in the entrance region of parallel horizontal 
plates at low Reynolds numbers. The Navier-Stokes 
and energy equations have been solved more accu- 
rately than previously with the use of the Richardson 
extrapolation to zero mesh size. Correlating equations 

(12)-(17) give fully developed incremental pressure 
drop number and incremental heat transfer numbers, 
as well as thermal entrance lengths, for use in the 

design of parallel plate heat exchangers. All the quan- 
tities presented are found to corrciate very welt with 
I! Re for the range of Rr considered. 

REFERENCES 

I. 1. L. Maclaine-cross and C. W. Ambrose, Predicted and 
measured pressure drop in parallel plate rotary regen- 
erators, J. Fluids Eqpg 102( 1). 59. 63 (19801. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

R. K. Shah and A. L. London, L~~inur Fh Forwci 
Contwtion in Ducrs. Academic Press, New York ( 1978). 
T. V. Nguyen and 1. L. Maclaine-cross. Incremental press- 
ure drop number in parallel-plate heat exchangers. J. 
FfctZs ~~~~~~ 110(l), 93~96 (1988). 
R. K. Shah, Thermal entry Iength solutions for the cir- 
cular tube and parallel plates, Proc. 3rd Nan. Heur .Mu.s.v 
Trcrm~u Cm/I, Indian Institute of Technology, Bombay. 
Vol. I, Paper No. HMT-I l-75 (1975). 
C. 1. Hwang and F. T. Fan, Finite difference analysis of 
forced-conv~tjon heat transfer in entrance region of a 
fiat rectangular duct, A&. Scietlt. Res.. Section A 13, 
401-422 (1963). 
i. L. Maclaine-cross. A theory ofcombined heat and mass 
transfer in regenerators, Ph.D. Thesis. DQXiFtrIWIt of 
McchallicaI Engineering, Monash University. Australia 
f 1974). 
B. P. Leonard, A stableand accurateconvectivc modelling 
procedure based on quadratic upstream interpolation. 
Cw7p. Mrrh. A&. Me&. Eagng 19, 59--9X ( I979). 
T. V. Nguyen, 1. L. Maclaine-cross and G. de Vahl Davis. 
M~w~c&zl Mc&ods in Hcut Tm~fir (Edited by R. W, 
Lewis. K. Morgan and 0. C. Zienkiewicz), pp. 349~.372. 
Wiley, New York (1981). 
R.-Y. Chen. Flow in the entrance region at tow Reynolds 
numbers, f. Fhids Engng 95, 153--I 58 (1973). 

ECO~JL~MENT EN DEVELOPPEM~N~ A FAIBLE NOMBRE DE REYNOLDS A 
L’ENTREE DE PLAQUES PARALLELES EN CASCADE 

RPsumP-C)n presente les risultats d’une etude numerique du developpement d’un ecoulement, a faible 
nombre de Reynolds, a l’entree d’une region avec des plaques horizontales en cascade et un Ccoulement 
uniforme cn amont. Les tyuations aux differences finies de Navier-Stokes et d’i-nergie, en tenant compte 
de la diffusion axiale de quantite de mouvement et de chaleur, sont resolues par les methodes ADI et 
QUICK et les resultats sont extrapoles i une dimension nulle de maille par l’extrapolation de Richardson. 
Les resultats pour I’ecoulement isotherme, pour les nombres de perte de pression et du transfert thermique, 
pour les longueurs d’entree hydrodynamique et thermique sent present&s pour Pr = 0,7 et un nombre de 
Reynolds entre I et 20, pour une temperature de paroi ou un tlux parietal uniforme. On obtient des 

formules pratiques precises pour l’effet du nombre de Reynolds sur les differentes caracteristiques. 
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ENTWICKLUNG EINER E~NLAUFSTR~MUNG ZWISCHEN PARALLELEN PLATTEN 
BEI KLEINER REYNOLDS-ZAHL 

Zusammenfassung-Die Ergebnisse der numerischen Berechnung einer sich bei kleiner Reynolds-Zahl 
entwickelnden Stromung im Einlaufgebiet einer Anordnung paralleler waagerechter Platten wird dar- 
gestellt, und zwar fur den Fall einer gleichfiirmigen Anstromung. Die partiellen Differentialgleichungen 
fur den axialen Transport von Impuls und Warme werden in Differenzenform tiberfiihrt und mit Hilfe 
des ADI- und QUICK-Verfahrens gel&. Die Ergebnisse werden mit Hilfe des erweiterten Richardson- 
Verfahrens auf die GittergrijRe 0 extrapoliert. Fur Pr = 0,7 und Reynolds-Zahlen zwischen I und 20 
werden als Ergebnis die folgenden GrGBen vorgestellt: Resultate fur isotherme St&mung. zusatzlicher 
Druckabfdh, Kennzahlen fiir den Warmeiibergang, hydrodynamische und thermische Einlauflangen. Die 
Berechnungen erfolgen fiir konstante Wandtemperatur und konstante W~rmestromdichtc an der Wand 
als Rand~dingungen. Zus5tzhch werden fur praktische Berechnungen Korrelationen fur den EinfluR der 

Reynolds-Zahi auf verschiedene GrBRen angegeben. 

COBMECTHO PA3BRBAK)LlJklECEI TEgEHMII C HkI3KMMM ‘4kiCJlAMM PEnHOJIbACA 
BO BXOAHOM YrIACTKE llAPAJIJIEJIbHbIX l-IJ-IACIliH 

A~IoT~~--IT~~J~~~uIT~R pesynbTaTb1 ~Hcnemoro mcnenoBaHHn coBMecm0 pamieamwixcrTe~eH~1 

npHHA3KOMYHCnePejiHO~b~~BOBXOruIOMy~aCTKeKaCKa~anap~~enbHblX TOpH30HT&JibHblXnJlaCTHH 

iTpH paBHOMepHOM paClIps%eJleHHH CKOpOCTeti BBepX l20 HOTOK)‘. KoHewio-pa3HocrwbIe COOTHOlHeHHH, 
BXOARIWie B ~H~~H~~H~e ypaBHeHHX COXpaHeHH% 3HepfHH B 4aCTHbIX IlpOH3BOAIibIX W OiIHCbI- 

BWlI@ie aKCWAJ#bHyK, JDi44y3EIo HMIIyJibca H TeHJM, f#HJ.IaHXCff MeTO.HaMH ADL H QUICK, H IIOJIy'EeH- 
nbie pe3yJlbTaTbl 3K~oO~y~TCK Ha pasuep nreiiKn CeTKH, PaBHMii Hymo, c npnMeneHHeM 

~CIlIBpWHOil 3KcfpaIIOJI5lHHH PH’iapJTCOHa. &WJTaBJIeHbI pe3yJIbTaTbI paCWTa H30TepMHYeCI(OfO 
Te’IeHHH, ne~Hal&i JTO6aBOHHOrO AaHJTeHHlt H ‘iHC4X TeHnOne~HOCa, a TaKXe .&HHHbl rUApO~HaMU%C- 
KOrO BTellJlOBOI'O HWWlbHbIXyYaCTKOB npH Pr = 0,7 H YHCJIe PeiiHOnbACa,~3MeHnoureMCK OT 1 W 20, 
u npH rpaHHHHMx ycJlominxc nocTorHHoii TemepaTypoii CTeHKHW nocTORHHblM TeIlJIOBbIM IIOTOKOM. 

lTony9eabtTowibIe n~me~epHbIeCOOTHOmeHsf~~r ylrera wnmim Re Ha pasnewbtenapah4eTpbI. 


