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Abstract—The results of a numerical study of the simultaneously developing flow at low Reynolds number
in the entrance region of a cascade of parallel horizontal plates with a uniform flow at upstream infinity are
presented. The finite difference equations for the Navier-Stokes and energy partial differential equations,
accounting for axial diffusion of momentum and heat, are solved by ADI and QUICK methods and the
results extrapolated to zero mesh size with extended Richardson extrapolation. The isothermal flow results,
incremental pressure drop and heat transfer numbers, and hydrodynamic and thermal entrance lengths are
presented for Pr = 0.7 and Reynolds numbers between | and 20; and for constant wall temperature and
constant wall heat flux boundary conditions. Accurate engineering correlations for the effects of the Re on
various quantities are also obtained.

1. INTRODUCTION

AMONG the practical considerations that attract the
continuing interest in the parallel plate passage
geometry is that it offers high heat transfer rate and
low pressure drop [1]. Two heat transfer boundary
conditions are of primary interest—constant wall tem-
perature, denoted here by subscript 7, and constant
wall heat flux, denoted by subscript H. For laminar
fully developed flow, the parallel plate passage
geometry has Nuy = 7.5407, Nu, = 82353 and
f Re = 24 giving a higher Nu/(f Re) than any other
cross-sections [2]. Typical compact gas-to-gas heat
exchangers have width/height ratios of at least 100
and require low Reynolds numbers and laminar flow.

The hydrodynamically developing flow between
parallel plates has been solved by a variety of methods.
Shah and London [2] presented values for K, the
incremental pressure drop number, for large Reynolds
numbers, and recommended a value of 0.674 for
K(00). This value is in excellent agreement with the
correlating equation, K(w0) = 0.6779+44.5914/Re for
40 < Re < 2000, given in ref. [3]. For the thermally
developing flow, known as the Graetz—Nusselt
problem, Shah [4] calculated the incremental heat
transfer number N for developing flow and fully
developed flow and obtained N; = 0.02348 and
Ny = 0.0364 with Pe = 0. For the simultaneously
developing flow problem, where both the velocity and
temperature profiles are developing together, only a
few solutions can be found in the literature. Hwang
and Fan [5] obtained a numerical solution for the T
and H boundary conditions with an assumed uniform
flow at the entrance. Their Nusselt numbers are also
reported in Shah and London [2].

This paper presents the results of a numerical study
of the simultaneously developing flow, laminar flow.

forced convection at Re ranging from 1 to 20 and
Pr = 0.7 in the entrance region of a cascade of hori-
zontal parallel plates. The flow is assumed to be uni-
form at upstream infinity. Two types of thermal
boundary conditions are considered—a constant axial
wall temperature and a constant and equal wall heat
flux. In most previous numerical solutions, the
approximations of various parameters, such as K(oc)
and N(o0), deteriorate at the end of the hydrodynamic
or thermal entrance. In the present work, dis-
cretization error is reduced by extrapolating three
mesh sizes to zero mesh size giving accurate results
and excellent agreement with previous solutions [3].

2. THE EQUATIONS AND THEIR SOLUTION

In Fig. 1 fluid is pictured as flowing through an
array of horizontal parallel plates which are a centre-
line distance H apart. Both the temperature T,
and velocity U, are uniform at upstream infinity. The
plates are either kept at the same uniform temperature
T, or the heat flux is constant. The flow becomes fully
developed far downstream. Dimensionless Cartesian
coordinates are chosen such that the plate spacing is
unity.

The equations of motion are written in terms of the
stream function y and vorticity {, defined by

0 0 dv Ou
T T I T
oy ax éx  dy

where u, v are velocity components in the x-, y-direc-
tion.

The dimensionless governing equations for vor-
ticity, stream function and temperature, derived from
the Navier—Stokes equations and subject to the usual
Boussinesq approximations, are
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NOMENCLATURE

Dy, hydraulic diameter RS dimensionless axial coordinate for the
i Fanning friction factor thermal probiem, x/(Dy, Re Pr)
Gr Grashof number X, dimensionless transformed axial
H channel width coordinate
K incremental pressure drop number v dimensionless coordinate normal to the
K(co) fully developed incremental pressure plates.

drop number
Ly, hydrodynamic entrance length Greek symbols
LY thermal entrance length x thermal diffusivity
n number of interior mesh points %y false transient factor
N incremental heat transfer number £ convergence factor
N{oo) fully developed incremental heat transfer ¢ vorticity

number { dimensionless temperature
Nu  Nusselt number v kinetic viscosity
Ap  pressure drop o fluid density
Pe Péclet number Y stream function.
Pr Prandtl number
Re Reynolds number, DU, /v Subscripts
t time be thermal boundary condition
At time step fd fully developed laminar flow
T temperature hy hydrodynamic problem
Ts plate temperature H constant heat flux boundary condition
T,  upstream temperature m mean
u dimensionless axial velocity p at the plate
Uy, mean dimensionless axial velocity t transformed
U,  upstream velocity th thermal problem
v dimensionless vertical velocity T constant temperature boundary
X dimensionless axial coordinate condition
x* dimensionless axial coordinate for the X local

hydrodynamic problem, x/(Dy, Re) 5 free stream value.
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in which # = (T—T ){(T,—T.,), Re = U, Dy/v, and
Pr=v/a. Here H, v, and a denote respectively the
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Fic. 1. Boundary conditions and solution region for parallel
plate cascade.

pitch of the plates, the kinetic viscosity and the ther-
mal diffusivity.

Figure 1 shows the region ABCDE within which
these equations were solved. The solution region is
extended to infinity both upstream and downstream
of the entry to the channels. Uniform flow was
imposed on section AE: u=1;0=0;0=0:{=0.
Since the solution region represents the upper half of
a channel formed by two parallel plates, the boundary
conditions on sections AB and DE are: r=0;
cu/dy = 0; { = 0. On section BC, the velocities are
zero and the stream function is constant.

The coordinates and partial differential equations,
equations (2)—(4), were transformed both upstream
and downstream of the entrance using a function
related to the downstream decay [6]. The transformed
coordinate x, is dimensionless and —1 <x, < 1. It
may be calculated from the dimensionless coordinate
x in equations (2)~(4) using

. = (} —exp (—|x]/{0.089275Re Pr))x
BT S T N T e 'l“:xtt—"" o T .

(5

The transformed coordinates give a more equal
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change in dependent variables over each grid element
and points at upstream and downstream infinity. The
number of grid elements required for a given dis-
cretization error is greatly reduced at the expense of
slightly more computation per grid element.

Finite difference equations were derived from the
transformed non-linear partial differential equations.
Forward differences were used for the time derivatives
and central differences for space derivatives. Quad-
ratic upstream interpolation for convective kinematics
(QUICK) [7] was used for the convective terms in
both the momentum and energy equations to give
stability with a discretization error of the order of the
square of the mesh size.

The alternating direction implicit (ADI) iterative
method was used to solve the non-linear finite differ-
ence equations simultaneously. Convergence was
measured by calculating

1 (i)n-é- 1 —(}5"

& =
? n¢mux

where n is the number of interior mesh points, ¢,
the maximum magnitude of ¢, «, the false transient
factor, and Ar the time step. Iteration was repeated
until ¢;, &, and &, were all less than 1077 so that the
error in solving the finite difference equations was
negligible and independent of grid size.

The dimensionless groups used in the present work
are defined as follows (note that the standard coor-
dinate x* = x/(D, Re) is used for the hydrodynamic
problem and x* = x/(D, Re Pr) for the thermal
problem):

o the incremental pressure drop number

Ap
K =Can

—(f Re)u(dx7); (M

o the local Nusselt number

o0
Nu_‘, =2 ((3;), _ 0/(9p —Om) (8)

where 8, is the fluid bulk mean temperature ;
o the mean Nusselt number

l X
Nu,, = “J Nu, dx; )

X Jo
o the incremental heat transfer number

th(x) = N“m.bCX* - Nubc'x*

(10)

where subscript be represents the associated thermal
boundary conditions (7 or H) and Nu,, is the Nusselt
number for fully developed flow.

Discretization error is the difference between the
exact solution of the finite difference equations and
the exact solution of the consistent partial differential
equations. For the finite difference equations used
here this is of the order of the grid size squared. It
may be reduced to fourth order by extrapolation to
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zero grid size of the finite difference equation solutions
for three different grid sizes. Each grid is solved with
the same parameters and boundary conditions. The
three grids chosen were 6 x 81, 11 x 161 and 21 x 321
mesh points in the y- and x-direction respectively,
making each grid size half its predecessor. The fol-
lowing extrapolation formula was calculated from the
general expression in Maclaine-cross [6] :

(AB—AI)—~712V(7A3-A%}

A=A3—- 51

an

where 43 is the value at the smallest grid size, etc. Tt
should be noted that the above formula is valid only
for grids formed by successive mesh doubling, only
for numerical methods which are uniformly second-
order accurate, and for very tight iterative conver-
gence. Other details of the solution method are dis-
cussed elsewhere [8].

3. ISOTHERMAL FLOW RESULTS

Equations (2)-(4) have been solved for the fol-
lowing Re: 1, 2, 5, 10, 15, and 20 and Pr=0.7. It
should be emphasized that Re is based on the
hydraulic diameter D, = 2H.

The extrapolated apparent Fanning friction factor-
Reynolds number product f,,, Re is presented in
Table 1 for the range of Re at each downstream
location for the hydrodynamic entrance region of par-
allel plates. As can be seen here, f,,, Re is strongly
dependent upon Re for low Re and has very steep
gradients close to the entrance. Far downstream from
the entrance, f,,, Re converges to the asymptotic fully
developed value of 24.

For the hydrodynamic entrance length problem
with a uniform flow far upstream, direct comparisons
of f,,p Re for low Re flows are difficult as only a few
solutions can be found in the literature. The only
available correlation presented in Shah and London
[2] gives values of f,,, Re which are independent of Re
and much lower than those in Table 1. The computed
apparent Fanning friction factor-Reynolds number
product distributions are shown graphically in Fig. 2
for different Re. The dashed line representing the Shah
and London correlation at Re = ¢ is also shown in
the same figure.

The development of the centreline velocity for vari-
ous Re is shown in Table 2 at each axial coarse mesh
station for Re = 1, 2, 5, 10, 15, and 20. For these low
Re flows with a uniform inlet condition at upstream
infinity, the upstream diffusion of momentum is quite
significant as can be seen from the centreline velocity
at the entrance (x* = 0). The dimensionless velocity
increases with decreasing Re at x* = 0 and is 24-33%
higher than the mean velocity u,,. Inside the channel,
wall shear takes effect and the centreline velocity
increases with Re.

The fully developed incremental pressure drop
number K(=0) is tabulated to four significant figures
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Table 1. Apparent Fanning friction -Reynolds number product
Re
X! | 2 5 10 15 20
0.01282 181.9620 1035631 58.6081 46.1770 43.0822 41,7367
0.02634  98.3552  61.1289 41.1411 357939 339890 33.0339
0.04063  70.8070 474956 354792 31.8083 30.5030 29.8591
0.05579 57.2620 409561 32.5395 29,6999 28.7353 28.2669
0.07192 493037 371669 30.6869 284210 276729 27.3097
0.08917 44,1220 346903 294107 27.5656 269624 26.6695
0.1077 40.5091 32,9254 284833 269522 264528 262103
0.1277 37.8586  31.5851 27.7811 264896 26.0685 258639
0.1495 358320 30.5199 272308 261273 257674 25.5926
0.1733 34.2260  29.6461 267865 25.8348 25.5243 253736
0.1996 329116 289127 26.4188 255927 253232 251924
0.2291 31.8038  28.2863 26.1079 253879  25.1531  25.0391
0.2625 30.8448 277429 258398 252114  25.0065 24.9069
0.3010 29.9945 272642 256042 25.0563 24.8776  24.7908
0.3466 202230 26.8349 25,3932 249174 247622 24.6868
0.4024 28.5098 264419 252000 24,7902 24,6565 24.5916
0.4743 27.8305 260716 25.0181 24.6704 24,3570 24.5019
0.5756 271574 257068 24.8388 245523 244589 244135
0.7489 264270 253120 24.6448 244246 243528 243179
20 polations gives an indication of the magnitude of the
Hop remaining discretization error. Two-point exira-
o] polation using the two smallest meshes gave values
o1 — ——— Shah and London [2] which arc within 0.5% of the three-point extra-
. polation, see the last column in Table 3. Tt is believed
& that the residual discretization error in K(c0) is less
N

o3}
x*

FiG. 2. Apparent Fanning friction factor-Reynolds number
product for hydrodynamically developing flow,

in Table 3 for the range of Re and three mesh sizes.
The three-point extrapolation to zero mesh size
reduces but does not eliminate discretization error. A
comparison of two-point and three-point extra-

than 0.5%.

For 1 < Re <20, K(x) correlates very well with
1/Re and the following equation is given to approxi-
male the values of K(c0) in Table 3 with the error
ranging from 0.06% at Re = 1-1.1% at Re = 20

K(oo) = 0.6090+6.6567/Re. (12)

The fully developed incremental pressure drop
number K(cc) can now be calculated for a wide range
of Re from 1 to 2000 from the above equation and
K(2c) = 0.6779+4.5914/Re given in ref. [3] with a
maximum error of 1.1%. The values of K(o¢) cal-
culated from the correlation given by Chen [9],
K(oc) = 0.64+38/Re, also presented in Shah and
London [2], are considerably higher for Re of up to

Table 2. v, /1,

Re
v ! 2 5 10 15 20
0.0 1.3340 1.3295 1.3149 1.2899 1.2657 1.2434
0.00633  1.3431 1.3477 1.3608 1.3813 1.3991 1.4137
0.01282  1.3522 1.3655 14014 1.4457 1.4711 1.4839
0.01949  1.3614 1.3827 1.4346 1.4802 1.4950 1.4988
0.02634  1.3704 1.3990 1.4594 1.4947 1.5000 1.5000
0.03338  1.3795 1.4143 1.4766 1.4995 1.5000 1.5000
0.04063  1.3884 1.4284 1.4877 1.5000 1.5000 1.5000
0.04809  1.3972 14411 1.4942 1.5000 1.5000 1.5000
0.05579  1.4058 1.4524 1.4978 1.5000 1.50600 1.5000
0.06372 14142 {.4623 1.4995 1.5000 1.5000 1.5000
0.07192 1.4224 1.4707 1.5000 1.5000 1.5000 1.5000
0.08917 14302 1.4778 1.5000 1.5000 1.5000 1.5000
0.10769  1.4379 1.5000 1.5000 1.5000 1.5000

1.4846
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Table 3. Incremental pressure drop number K(o0)

Re 6x81 11x161 21x321 Extrapolated Difference (%)
1 6.3603  6.8860  7.1549 7.2707 0.36
2 35631 37832  3.8864 3.9300 0.23
5 1.9023 1.9236 1.9294 1.9314 0.00
10 1.3460 1.3055 1.2820 [.2718 0.18
15 1.1538 1.1030 1.0709 1.0566 0.34
20 1.0475  1.0045  0.9688 0.9521 0.50
Table 4. Hydrodynamic entrance length Ly,
Re 1 2 5 10 15 20
Ly, 0.18086 0.09172 0.03877 0.02142 0.01634 0.01323

600 and lower for Re above 1000 than those of the
present study.

The hydrodynamic entrance length Ly, defined as
the duct length required to achieve a duct section
maximum velocity of 99% of the fully developed vaiue
(1.5 for parallel plates), is presented in Table 4. Ly,
= 0.011 and is constant when based on a boundary
layer type analysis [2]. However, when the complete
set of Navier-Stokes equations is solved L, is a strong
function of Re for low Re flows, as seen in Table 4.

For Pr=10.7 and 1 < Re < 20, the following cor-
relation is provided to approximate these values with
the error ranging from 0.6% at Re = 15 to 3.5% at
Re =12:

Ly, = 0.004004 +0.1765/Re. 13)

Chen [9] proposed an equation to calculate Ly, for
the hydrodynamically developing flow problem with
a uniform flow at the entrance which gives values
considerably higher than those in Table 4. The main
contributing factor for this is the significant upstream
diffusion of momentum in the case considered here,
hence more developed velocity profiles and shorter
entrance lengths.

4. CONSTANT WALL TEMPERATURE
RESULTS

The fully developed Nusselt number for the con-
stant wall temperature boundary condition is 7.5407
for the case of negligible axial heat conduction. How-
ever, when the effect of axial heat conduction in the
fluid is included, the fully developed Nusselt number

Table 5. Fully developed Nu; as a function

of Pe

Pe Present solution  Ref. [2]
0.7 8.0363
1.4 7.9668

1.4364 7.9635 7.964
35 7.8160
7 7.6838
10.5 7.6231
14 7.5926

Nug is a strong function of the Péclet number for low
Péclet number flows. The present numerical results
are listed in Table 5. An additional solution at
Pe = 1.4354 was obtained and the fully developed
Nuz of 7.9635 from the present work is in excellent
agreement with the value of 7.964 given in Shah and
London [2].

The extrapolated values of the fully developed
incremental heat transfer number N,(o0) at Pr = 0.7
are given in Table 6.

For Pr=0.7 and 1 £ Re < 20, the following cor-
relation can be used to approximate the data in Table
6 with the error ranging from 0.4% at Re = 20 to
34% at Re = 5

N(50) = 0.006778 +0.9756/ Re. (14)

The dimensionless thermal entrance lengths L -
defined by Nu (L% ;) = 1.05Nu,, are given in
Table 7.

Equation (15) correlates these values with the devi-
ation ranging from 0.3% at Re =20 to 3.7% at
Re=2

L% =0.0003545+40.2643/Re. 15)

5. CONSTANT WALL HEAT FLUX RESULTS

In the case of constant wall heat flux, the axial heat
conduction within the fluid is constant and therefore
does not affect the Nusselt number. The fully
developed Nusselt number in this case is 8.2353 and
is independent of the Péclet number. Table 8 presents
the extrapolated fully developed incremental heat
transfer number N, (20) obtained in the present work.

For Pr=0.7 and 1 < Re < 20, the following cor-
relation is provided to approximate the values in
Table 8 with the error ranging from 0% at Re = 5 to
1.4% at Re = 20:

Nu(oc) = 0.04423 +0.6134/Re. (16)

The dimensionless thermal entrance length L},
presented in Table 9 can be calculated from the fol-
lowing equation with the deviation ranging from
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Table 6. Fully developed incremental heat transfer number ¥ {o0) at £r= 0.7

Re i 2 S

T. V. NGUYEN

-

10 i5 20
Np(>) 09781 0.5046 0.2002 0.1009 0.07038 0.05638
Table 7. Thermal entrance length L -
Re 1 2 5 10 {5 20
L+ 0.2655 0.1309 0.05278 0.02686 0.01866 0.01405

Table 8. Incremental heat transfer number N, {oc) at Pr=0.7

Re 1 2 ) 10 5 20
Np(oc)  0.6568 0.3526 0.1669 0.1067 0.08417 0.07389
Table 9. Thermal entrance length L¥ ,,
Re 1 2 5 10 15 20
L, 02635 0.1355 0.05855 0.03380 0.02534 0.02124
0.07% at Re = | to 1.6% at Re = 20: 2. R. K. Shah and A. L. London, Laminar Flow Forced
Convection in Ducts. Academic Press, New York (1978).
Lk, = 0.008146+0.2552/ Re. {17) 3. T.V.Nguyenandl. L. Maclaine-cross, Incremental press-
ure drop number in parallel-plate heat exchangers, J.
Fluids Engng 110(1), 93-96 (1988).
6. CONCLUSIONS 4. R. K. Shah, Thermal entry length solutions for the cir-

An analysis has been presented for the flow and heat
transfer in the entrance region of paralle]l horizontal
plates at low Reynolds numbers. The Navier—Stokes
and energy equations have been solved more accu-
rately than previously with the use of the Richardson
extrapolation to zero mesh size. Correlating equations
(12)-(17) give fully developed incremental pressure
drop number and incremental heat transfer numbers,
as well as thermal cntrance lengths, for use in the
design of parallel plate heat exchangers. All the quan-
tities presented are found to correlate very well with
1/Re for the range of Re considered.
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ECOULEMENT EN DEVELOPPEMENT A FAIBLE NOMBRE DE REYNOLDS A
L’ENTREE DE PLAQUES PARALLELES EN CASCADE

Résumé—On présente les résultats d'une étude numérique du développement d’un écoulement, a faible
nombre de Reynolds, & entrée d’une région avec des plaques horizontales en cascade et un écoulement
uniforme en amont. Les équations aux différences finies de Navier-Stokes et d’énergie, en tenant compte
de la diffusion axiale de quantité de mouvement et de chaleur, sont résolues par les méthodes ADI et
QUICK et les résultats sont extrapolés a une dimension nulle de maille par Pextrapolation de Richardson.
Les résultats pour I'écoulement isotherme, pour les nombres de perte de pression et du transfert thermique,
pour les longueurs d’entrée hydrodynamique et thermique sont présentés pour Pr = 0,7 et un nombre de
Reynolds entre | et 20, pour une température de paroi ou un flux pariétal uniforme. On obtient des
formules pratiques précises pour I'effet du nombre de Reynolds sur les différentes caractéristiques.
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ENTWICKLUNG EINER EINLAUFSTROMUNG ZWISCHEN PARALLELEN PLATTEN
BEI KLEINER REYNOLDS-ZAHL

Zusammenfassung—Die Ergebnisse der numerischen Berechnung einer sich bei kleiner Reynolds-Zahl
entwickelnden Strémung im Einlaufgebiet einer Anordnung paralleler waagerechter Platten wird dar-
gestellt, und zwar fiir den Fall einer gleichformigen Anstromung. Die partiellen Differentialgleichungen
fiir den axialen Transport von Impuls und Wirme werden in Differenzenform iberfithrt und mit Hilfe
des ADI- und QUICK-Verfahrens geldst. Die Ergebnisse werden mit Hilfe des erweiterten Richardson-
Verfahrens auf die GittergroBe 0 extrapoliert. Fiir Pr = 0.7 und Reynolds-Zahlen zwischen | und 20
werden als Ergebnis die folgenden Groflen vorgestellt: Resultate fiir isotherme Strémung, zusétzlicher
Druckabfall, Kennzahlen fiir den Wirmeiibergang, hydrodynamische und thermische Einlauflingen. Die
Berechnungen erfolgen fiir konstante Wandtemperatur und konstante Wiirmestromdichte an der Wand
als Randbedingungen. Zusitzlich werden {ir praktische Berechnungen Korrelationen fiir den Einflu} der
Reynolds-Zah! auf verschiedene Gréflen angegeben.

COBMECTHO PA3BUBAIOIUECS TEYEHHA C HU3KUMU YHCIIAMH PEMHOJILACA
BO BXOHOM VYACTKE TTAPAJUIEJIBHBIX IMJIACTHH

AsmoTramas—ITpHBONSTCH Pe3yIbTaThl YHCIEHHOrO HCCIENOBAHHA COBMECTHO Pa3BHBAIOIIMXCHA TECYECHHH
Py HE3KOM 4ucie PelfHONBACA BO BXOQHOM Y4AacTKe KAaCKaa Napaliie/IbHBIX TOPM3OHTANBHBIX MIACTHH
TIPH PaBHOMEPHOM PacHpenciieHHH CKOpocTeil BBepX 1o NMOTOKY. KOHEYHO-pasHOCTHBIE COOTHOMICHHS,
Bxogsipe 8 nuddepenuHaIbHbE YPABHEHAA COXPAHEHHN JHEPTHH B YACTHHIX NPOUIBOMHBIX K OMHCHI-
BAIOHIME aKCHANbHYIO Auddy3uio uMayanca B Tena, pematores Merogama ADI u QUICK, u nonyyes-
HBIC PE3YABTATH JKCTPANOJUPYIOTCR Ha pasmep #4eliKM CETKH, DPaBHBIH HYIIO, ¢ [PHAMEHEHHEM
pacumpesHod Jkcrpanonanuyu Pukapncona. [lpencraBieHsr pe3yiabTaThl PacyeTa H3IOTEPMHYECKOrO
TeveHHs, nepenana R00aBOYHOTC MABJCHMS ¥ YMCEJ TEIUIONEPEHOCA, a TaKXKe JUIMHBI T'HAPOAYHAMHAYEC-
KOTO ¥ TEIUIOBOrO Ha4aJIbHBIX y4acTkos np# Pr = 0,7 u uucne Peltnonbaca, mamensmomemcs ot 1 no 20,
H NPH TPaHWYHBIX YCJIOBHSAX C MOCTOSHHOM TEMIEPATYPOH CTEHKH M ITOCTOSHHBIM TENJIOBRIM IMOTOKOM.
ITosryueHs! TOYHBIC HHXEHEDHBIE COOTHOILIEHHS U1 y4eTa BJIHAHAS Re Ha pa’IM4HbIC TapaMeTpPhl.



